Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.713
Filtrar
1.
Biochem Soc Trans ; 52(2): 505-515, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38629612

RESUMO

In eukaryotic cells, organelle and vesicle transport, positioning, and interactions play crucial roles in cytoplasmic organization and function. These processes are governed by intracellular trafficking mechanisms. At the core of that trafficking, the cytoskeleton and directional transport by motor proteins stand out as its key regulators. Plant cell tip growth is a well-studied example of cytoplasm organization by polarization. This polarization, essential for the cell's function, is driven by the cytoskeleton and its associated motors. This review will focus on myosin XI, a molecular motor critical for vesicle trafficking and polarized plant cell growth. We will center our discussion on recent data from the moss Physcomitrium patens and the liverwort Marchantia polymorpha. The biochemical properties and structure of myosin XI in various plant species are discussed, highlighting functional conservation across species. We further explore this conservation of myosin XI function in the process of vesicle transport in tip-growing cells. Existing evidence indicates that myosin XI actively organizes actin filaments in tip-growing cells by a mechanism based on vesicle clustering at their tips. A hypothetical model is presented to explain the essential function of myosin XI in polarized plant cell growth based on vesicle clustering at the tip. The review also provides insight into the in vivo localization and dynamics of myosin XI, emphasizing its role in cytosolic calcium regulation, which influences the polymerization of F-actin. Lastly, we touch upon the need for additional research to elucidate the regulation of myosin function.


Assuntos
Miosinas , Células Vegetais , Miosinas/metabolismo , Células Vegetais/metabolismo , Bryopsida/metabolismo , Bryopsida/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Citoesqueleto de Actina/metabolismo , Marchantia/metabolismo , Marchantia/crescimento & desenvolvimento , Desenvolvimento Vegetal/fisiologia
2.
Sheng Wu Gong Cheng Xue Bao ; 40(4): 971-987, 2024 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-38658142

RESUMO

The heterogeneity of gene expression in plant cells plays a crucial role in determining the functional differences among tissues. Recent advancements in spatial transcriptome (ST) technology have significantly contributed to the study of specific biological questions in plants. This technology has been successfully applied to examine cell development, identification, and stress resistance. This review aims to explore the application of ST technology in plants by reviewing three aspects: the development of ST technology, its current application in plants, and future research directions. The review provides a systematic description of the development process of ST technology, with a focus on analyzing its progress in studying plant cell growth and differentiation, plant cell identification, and stress resistance. In addition, the challenges faced by ST technology in plant applications are summarized, along with proposed future directions for plant research, including the advantages of combining other omics technologies with ST technology to tackle scientific challenges in the field of plants.


Assuntos
Perfilação da Expressão Gênica , Plantas , Transcriptoma , Plantas/genética , Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico , Desenvolvimento Vegetal/genética , Células Vegetais/metabolismo
3.
Biomolecules ; 14(3)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38540732

RESUMO

A growing number of studies have indicated that extracellular vesicles (EVs), such as exosomes, are involved in the development of neurodegenerative diseases. Components of EVs with biological effects like proteins, nucleic acids, or other molecules can be delivered to recipient cells to mediate physio-/pathological processes. For instance, some aggregate-prone proteins, such as ß-amyloid and α-synuclein, had been found to propagate through exosomes. Therefore, either an increase of detrimental molecules or a decrease of beneficial molecules enwrapped in EVs may fully or partly indicate disease progression. Numerous studies have demonstrated that dysbiosis of the gut microbiota and neurodegeneration are tightly correlated, well-known as the "gut-brain axis". Accumulating evidence has revealed that the gut bacteria-derived EVs play a pivotal role in mediating microbe-host interactions and affect the function of the "gut-brain axis", which subsequently contributes to the pathogenesis of neurodegenerative diseases. In this review, we first briefly discuss the role of EVs from mammalian cells and microbes in mediating the progression of neurodegenerative diseases, and then propose a novel strategy that employs EVs of plants (plant cell-derived exosome-like nanoparticles) for treating neurodegeneration.


Assuntos
Exossomos , Vesículas Extracelulares , Doenças Neurodegenerativas , Animais , Doenças Neurodegenerativas/metabolismo , Células Vegetais/metabolismo , Vesículas Extracelulares/metabolismo , Exossomos/metabolismo , Bactérias , Mamíferos
4.
Nat Plants ; 10(3): 483-493, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38454063

RESUMO

Morphogenesis of multicellular organs requires coordination of cellular growth. In plants, cell growth is determined by turgor pressure and the mechanical properties of the cell wall, which also glues cells together. Because plants have to integrate tissue-scale mechanical stresses arising through growth in a fixed tissue topology, they need to monitor cell wall mechanical status and adapt growth accordingly. Molecular factors have been identified, but whether cell geometry contributes to wall sensing is unknown. Here we propose that plant cell edges act as cell-wall-sensing domains during growth. We describe two Receptor-Like Proteins, RLP4 and RLP4-L1, which occupy a unique polarity domain at cell edges established through a targeted secretory transport pathway. We show that RLP4s associate with the cell wall at edges via their extracellular domain, respond to changes in cell wall mechanics and contribute to directional growth control in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Parede Celular/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Plantas/metabolismo , Proliferação de Células , Células Vegetais/metabolismo
5.
Plant Cell Environ ; 47(4): 1348-1362, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38223941

RESUMO

The first and committed step in proline synthesis from glutamate is catalyzed by δ1 -pyrroline-5-carboxylate synthetase (P5CS). Two P5CS genes have been found in most angiosperms, one constitutively expressed to satisfy proline demand for protein synthesis, the other stress-induced. Despite the number of papers to investigate regulation at the transcriptional level, to date, the properties of the enzymes have been subjected to limited study. The isolation of Arabidopsis thaliana P5CS isoenzymes was achieved through heterologous expression and affinity purification. The two proteins were characterized with respect to kinetic and biochemical properties. AtP5CS2 showed KM values in the micro- to millimolar range, and its activity was inhibited by NADP+ , ADP and proline, and by glutamine and arginine at high levels. Mg2+ ions were required for activity, which was further stimulated by K+ and other cations. AtP5CS1 displayed positive cooperativity with glutamate and was almost insensitive to inhibition by proline. In the presence of physiological, nonsaturating concentrations of glutamate, proline was slightly stimulatory, and glutamine strongly increased the catalytic rate. Data suggest that the activity of AtP5CS isoenzymes is differentially regulated by a complex array of factors including the concentrations of proline, glutamate, glutamine, monovalent cations and pyridine dinucleotides.


Assuntos
Arabidopsis , Pirróis , Arabidopsis/genética , Glutamina , Isoenzimas , Células Vegetais/metabolismo , Plantas/metabolismo , Prolina/metabolismo , Ácido Glutâmico , Ligases
6.
Plant Cell Environ ; 47(3): 928-946, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38164082

RESUMO

The green leaf volatiles (GLVs) Z-3-hexen-1-ol (Z3-HOL) and Z-3-hexenyl acetate (Z3-HAC) are airborne infochemicals released from damaged plant tissues that induce defenses and developmental responses in receiver plants, but little is known about their mechanism of action. We found that Z3-HOL and Z3-HAC induce similar but distinctive physiological and signaling responses in tomato seedlings and cell cultures. In seedlings, Z3-HAC showed a stronger root growth inhibition effect than Z3-HOL. In cell cultures, the two GLVs induced distinct changes in MAP kinase (MAPK) activity and proton fluxes as well as rapid and massive changes in the phosphorylation status of proteins within 5 min. Many of these phosphoproteins are involved in reprogramming the proteome from cellular homoeostasis to stress and include pattern recognition receptors, a receptor-like cytoplasmic kinase, MAPK cascade components, calcium signaling proteins and transcriptional regulators. These are well-known components of damage-associated molecular pattern (DAMP) signaling pathways. These rapid changes in the phosphoproteome may underly the activation of defense and developmental responses to GLVs. Our data provide further evidence that GLVs function like DAMPs and indicate that GLVs coopt DAMP signaling pathways.


Assuntos
Células Vegetais , Compostos Orgânicos Voláteis , Células Vegetais/metabolismo , Plântula/metabolismo , Plantas/metabolismo , Transdução de Sinais , Folhas de Planta/metabolismo , Compostos Orgânicos Voláteis/metabolismo
7.
Plant Cell Environ ; 47(2): 527-539, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37946673

RESUMO

Plant aquaporins (AQPs) facilitate the membrane diffusion of water and small solutes, including hydrogen peroxide (H2 O2 ) and, possibly, cations, essential signalling molecules in many physiological processes. While the determination of the channel activity generally depends on heterologous expression of AQPs in Xenopus oocytes or yeast cells, we established a genetic tool to determine whether they facilitate the diffusion of H2 O2 through the plasma membrane in living plant cells. We designed genetic constructs to co-express the fluorescent H2 O2 sensor HyPer and AQPs, with expression controlled by a heat shock-inducible promoter in Nicotiana tabacum BY-2 suspension cells. After induction of ZmPIP2;5 AQP expression, a HyPer signal was recorded when the cells were incubated with H2 O2 , suggesting that ZmPIP2;5 facilitates H2 O2 transmembrane diffusion; in contrast, the ZmPIP2;5W85A mutated protein was inactive as a water or H2 O2 channel. ZmPIP2;1, ZmPIP2;4 and AtPIP2;1 also facilitated H2 O2 diffusion. Incubation with abscisic acid and the elicitor flg22 peptide induced the intracellular H2 O2 accumulation in BY-2 cells expressing ZmPIP2;5. We also monitored cation channel activity of ZmPIP2;5 using a novel fluorescent photo-switchable Li+ sensor in BY-2 cells. BY-2 suspension cells engineered for inducible expression of AQPs as well as HyPer expression and the use of Li+ sensors constitute a powerful toolkit for evaluating the transport activity and the molecular determinants of PIPs in living plant cells.


Assuntos
Aquaporinas , Peróxido de Hidrogênio , Peróxido de Hidrogênio/metabolismo , Células Vegetais/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Aquaporinas/genética , Aquaporinas/metabolismo , Membrana Celular/metabolismo , Cátions/metabolismo , Água/metabolismo
8.
Plant J ; 117(2): 364-384, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37864806

RESUMO

Autophagy, a fundamental cellular process, plays a vital role in maintaining cellular homeostasis by degrading damaged or unnecessary components. While selective autophagy has been extensively studied in animal cells, its significance in plant cells has only recently gained attention. In this review, we delve into the intriguing realm selective autophagy in plants, with specific focus on its involvement in nutrient recycling, organelle turnover, and stress response. Moreover, recent studies have unveiled the interesting interplay between selective autophagy and epigenetic mechanisms in plants, elucidating the significance of epigenetic regulation in modulating autophagy-related gene expression and finely tuning the selective autophagy process in plants. By synthesizing existing knowledge, this review highlights the emerging field of selective autophagy in plant cells, emphasizing its pivotal role in maintaining nutrient homeostasis, facilitating cellular adaptation, and shedding light on the epigenetic regulation that governs these processes. Our comprehensive study provides the way for a deeper understanding of the dynamic control of cellular responses to nutrient availability and stress conditions, opening new avenues for future research in this field of autophagy in plant physiology.


Assuntos
Epigênese Genética , Células Vegetais , Animais , Células Vegetais/metabolismo , Autofagia , Plantas/genética , Plantas/metabolismo , Organelas
9.
Trends Plant Sci ; 29(2): 126-129, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37778886

RESUMO

Plant metabolic engineering must take into consideration the heterogeneous cell types that play a role in metabolite production; cells do not participate equally. We posit that artificial intelligence (AI) developed for biomedical purposes can be applied to plant cell characterization to accelerate the development of metabolic engineering strategies in plants.


Assuntos
Engenharia Metabólica , Células Vegetais , Células Vegetais/metabolismo , Inteligência Artificial , Plantas/genética , Plantas/metabolismo
10.
Nature ; 621(7979): 586-591, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37704725

RESUMO

Many animal- and plant-pathogenic bacteria use a type III secretion system to deliver effector proteins into host cells1,2. Elucidation of how these effector proteins function in host cells is critical for understanding infectious diseases in animals and plants3-5. The widely conserved AvrE-family effectors, including DspE in Erwinia amylovora and AvrE in Pseudomonas syringae, have a central role in the pathogenesis of diverse phytopathogenic bacteria6. These conserved effectors are involved in the induction of 'water soaking' and host cell death that are conducive to bacterial multiplication in infected tissues. However, the exact biochemical functions of AvrE-family effectors have been recalcitrant to mechanistic understanding for three decades. Here we show that AvrE-family effectors fold into a ß-barrel structure that resembles bacterial porins. Expression of AvrE and DspE in Xenopus oocytes results in inward and outward currents, permeability to water and osmolarity-dependent oocyte swelling and bursting. Liposome reconstitution confirmed that the DspE channel alone is sufficient to allow the passage of small molecules such as fluorescein dye. Targeted screening of chemical blockers based on the predicted pore size (15-20 Å) of the DspE channel identified polyamidoamine dendrimers as inhibitors of the DspE/AvrE channels. Notably, polyamidoamines broadly inhibit AvrE and DspE virulence activities in Xenopus oocytes and during E. amylovora and P. syringae infections. Thus, we have unravelled the biochemical function of a centrally important family of bacterial effectors with broad conceptual and practical implications in the study of bacterial pathogenesis.


Assuntos
Proteínas de Bactérias , Células Vegetais , Doenças das Plantas , Porinas , Água , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Morte Celular , Fluoresceína/metabolismo , Lipossomos/metabolismo , Oócitos/metabolismo , Oócitos/microbiologia , Células Vegetais/metabolismo , Células Vegetais/microbiologia , Doenças das Plantas/microbiologia , Porinas/química , Porinas/metabolismo , Dobramento de Proteína , Soluções/metabolismo , Água/metabolismo , Xenopus laevis , Concentração Osmolar
11.
Plant J ; 116(5): 1529-1544, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37658783

RESUMO

Structural determinants of substrate recognition remain inadequately defined in broad specific cell-wall modifying enzymes, termed xyloglucan xyloglucosyl transferases (XETs). Here, we investigate the Tropaeolum majus seed TmXET6.3 isoform, a member of the GH16_20 subfamily of the GH16 network. This enzyme recognises xyloglucan (XG)-derived donors and acceptors, and a wide spectrum of other chiefly saccharide substrates, although it lacks the activity with homogalacturonan (pectin) fragments. We focus on defining the functionality of carboxyl-terminal residues in TmXET6.3, which extend acceptor binding regions in the GH16_20 subfamily but are absent in the related GH16_21 subfamily. Site-directed mutagenesis using double to quintuple mutants in the carboxyl-terminal region - substitutions emulated on barley XETs recognising the XG/penta-galacturonide acceptor substrate pair - demonstrated that this activity could be gained in TmXET6.3. We demonstrate the roles of semi-conserved Arg238 and Lys237 residues, introducing a net positive charge in the carboxyl-terminal region (which complements a negative charge of the acidic penta-galacturonide) for the transfer of xyloglucan fragments. Experimental data, supported by molecular modelling of TmXET6.3 with the XG oligosaccharide donor and penta-galacturonide acceptor substrates, indicated that they could be accommodated in the active site. Our findings support the conclusion on the significance of positively charged residues at the carboxyl terminus of TmXET6.3 and suggest that a broad specificity could be engineered via modifications of an acceptor binding site. The definition of substrate specificity in XETs should prove invaluable for defining the structure, dynamics, and function of plant cell walls, and their metabolism; these data could be applicable in various biotechnologies.


Assuntos
Aminoácidos , Glicosiltransferases , Especificidade por Substrato , Glicosiltransferases/metabolismo , Aminoácidos/metabolismo , Células Vegetais/metabolismo , Parede Celular/metabolismo , Xilanos/metabolismo
12.
Science ; 381(6660): 823, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37616374

RESUMO

ATP generated with renewable power could be used to manufacture proteins and medicines.


Assuntos
Trifosfato de Adenosina , Eletricidade , Células Vegetais , Células Vegetais/metabolismo , Trifosfato de Adenosina/metabolismo
13.
Structure ; 31(11): 1375-1385, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37597511

RESUMO

Structural analysis of macromolecular complexes within their natural cellular environment presents a significant challenge. Recent applications of solid-state NMR (ssNMR) techniques on living fungal cells and intact plant tissues have greatly enhanced our understanding of the structure of extracellular matrices. Here, we selectively highlight the most recent progress in this field. Specifically, we discuss how ssNMR can provide detailed insights into the chemical composition and conformational structure of pectin, and the consequential impact on polysaccharide interactions and cell wall organization. We elaborate on the use of ssNMR data to uncover the arrangement of the lignin-polysaccharide interface and the macrofibrillar structure in native plant stems or during degradation processes. We also comprehend the dynamic structure of fungal cell walls under various morphotypes and stress conditions. Finally, we assess how the combination of NMR with other techniques can enhance our capacity to address unresolved structural questions concerning these complex macromolecular assemblies.


Assuntos
Células Vegetais , Polissacarídeos , Células Vegetais/química , Células Vegetais/metabolismo , Polissacarídeos/química , Espectroscopia de Ressonância Magnética , Parede Celular/metabolismo , Pectinas/análise , Pectinas/química , Pectinas/metabolismo
14.
PLoS Pathog ; 19(8): e1011263, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37578981

RESUMO

Pathogenic Xanthomonas bacteria cause disease on more than 400 plant species. These Gram-negative bacteria utilize the type III secretion system to inject type III effector proteins (T3Es) directly into the plant cell cytosol where they can manipulate plant pathways to promote virulence. The host range of a given Xanthomonas species is limited, and T3E repertoires are specialized during interactions with specific plant species. Some effectors, however, are retained across most strains, such as Xanthomonas Outer Protein L (XopL). As an 'ancestral' effector, XopL contributes to the virulence of multiple xanthomonads, infecting diverse plant species. XopL homologs harbor a combination of a leucine-rich-repeat (LRR) domain and an XL-box which has E3 ligase activity. Despite similar domain structure there is evidence to suggest that XopL function has diverged, exemplified by the finding that XopLs expressed in plants often display bacterial species-dependent differences in their sub-cellular localization and plant cell death reactions. We found that XopL from X. euvesicatoria (XopLXe) directly associates with plant microtubules (MTs) and causes strong cell death in agroinfection assays in N. benthamiana. Localization of XopLXe homologs from three additional Xanthomonas species, of diverse infection strategy and plant host, revealed that the distantly related X. campestris pv. campestris harbors a XopL (XopLXcc) that fails to localize to MTs and to cause plant cell death. Comparative sequence analyses of MT-binding XopLs and XopLXcc identified a proline-rich-region (PRR)/α-helical region important for MT localization. Functional analyses of XopLXe truncations and amino acid exchanges within the PRR suggest that MT-localized XopL activity is required for plant cell death reactions. This study exemplifies how the study of a T3E within the context of a genus rather than a single species can shed light on how effector localization is linked to biochemical activity.


Assuntos
Xanthomonas campestris , Xanthomonas , Xanthomonas/genética , Xanthomonas/metabolismo , Proteínas de Bactérias/metabolismo , Células Vegetais/metabolismo , Plantas/metabolismo , Morte Celular , Microtúbulos/metabolismo , Doenças das Plantas/microbiologia , Xanthomonas campestris/genética , Xanthomonas campestris/metabolismo
15.
Planta ; 258(2): 39, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37410253

RESUMO

MAIN CONCLUSION: The comparison of the changes of the lipid content in plant cell boundary membranes demonstrates a substantial role of the vacuolar membrane in response to hyperosmotic stress. Comparison of variations in the lipid content of plant cell boundary membranes (vacuolar and plasma membranes) isolated from beet root tissues (Beta vulgaris L.) was conducted after the effect of hyperosmotic stress. Both types of membranes participate in the formation of protective mechanisms, but the role of the vacuolar membrane was considered as more essential. This conclusion was connected with more significant adaptive variations in the content and composition of sterols and fatty acids in the vacuolar membrane (although some of the adaptive variations, especially, in the composition of phospholipids and glycoglycerolipids were similar for both types of membranes). In the plasma membrane under hyperosmotic stress, the increase in the content of sphingolipids was noted that was not observed in the tonoplast.


Assuntos
Citoproteção , Lipídeos de Membrana , Lipídeos de Membrana/metabolismo , Células Vegetais/metabolismo , Membrana Celular/metabolismo , Vacúolos/metabolismo , Plantas/metabolismo
16.
Methods Mol Biol ; 2690: 133-135, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37450144

RESUMO

Forster resonance energy transfer (FRET) is an efficient method to visualize the protein-protein interaction in living cells. This technique is based on transfer of energy between two different fluorophores that are fused to two interacting proteins. In this chapter, we described the FRET assay to visualize the protein-protein interaction in plant cells.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Células Vegetais , Transferência Ressonante de Energia de Fluorescência/métodos , Proteínas de Fluorescência Verde , Proteínas Luminescentes/metabolismo , Células Vegetais/metabolismo , Fenômenos Biofísicos
17.
Methods Mol Biol ; 2690: 137-147, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37450145

RESUMO

Identification of protein-protein interactions (PPIs) and protein kinase substrates is fundamental for understanding how proteins exert biological functions with their partners and targets. However, it is still technically challenging, especially for transient and weak interactions involved in most cellular processes. The proximity-tagging systems enable capturing snapshots of both stable and transient PPIs. In this chapter, we describe in detail the methodology of a novel proximity-based labeling approach, PUP-IT (pupylation-based interaction tagging), to identify PPIs using a protoplast transient expression system. We have successfully identified potential kinase substrates by targeted screening and tandem mass spectrometry analysis.


Assuntos
Proteínas de Bactérias , Células Vegetais , Células Vegetais/metabolismo , Proteínas de Bactérias/metabolismo , Espectrometria de Massas em Tandem
18.
Biomaterials ; 298: 122142, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37148757

RESUMO

Diabetes Mellitus is a silent epidemic affecting >500 million, which claimed 6.7 million lives in 2021, a projected increase of >670% in <20 years old in the next two decades but insulin is unaffordable for the large majority of the globe. Therefore, we engineered proinsulin in plant cells to facilitate oral delivery. Stability of the proinsulin gene and expression in subsequent generations, after removal of the antibiotic-resistance gene, was confirmed using PCR, Southern and western blots. Proinsulin expression was high (up to 12 mg/g DW or 47.5% of total leaf protein), stable up to one year after storage of freeze-dried plant cells at ambient temperature and met FDA regulatory requirements of uniformity, moisture content and bioburden. GM1 receptor binding, required for uptake via gut epithelial cells was confirmed by pentameric assembly of CTB-Proinsulin. IP insulin injections (without C peptide) in STZ mice rapidly decreased blood glucose level leading to transient hypoglycemia, followed by hepatic glucose compensation. On the other hand, other than the 15-min lag period of oral proinsulin (transit time required to reach the gut), the kinetics of blood sugar regulation of oral CTB-Proinsulin in STZ mice was very similar to naturally secreted insulin in healthy mice (both contain C-peptide), without rapid decrease or hypoglycemia. Elimination of expensive fermentation, purification and cold storage/transportation should reduce cost and increase other health benefits of plant fibers. The recent approval of plant cell delivery of therapeutic proteins by FDA and approval of CTB-ACE2 for phase I/II human clinical studies augur well for advancing oral proinsulin to the clinic.


Assuntos
Hipoglicemia , Insulina , Humanos , Animais , Camundongos , Adulto Jovem , Adulto , Insulina/metabolismo , Proinsulina , Glicemia/análise , Células Vegetais/química , Células Vegetais/metabolismo , Peptídeo C
19.
Phytopathology ; 113(4): 626-636, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37099273

RESUMO

In the early 1960s, Pseudomonas syringae and other host-specific phytopathogenic proteobacteria were discovered to elicit a rapid, resistance-associated death when infiltrated at high inoculum levels into nonhost tobacco leaves. This hypersensitive reaction (or response; HR) was a useful indicator of basic pathogenic ability. Research over the next 20 years failed to identify an elicitor of the HR but revealed that its elicitation required contact between metabolically active bacterial and plant cells. Beginning in the early 1980s, molecular genetic tools were applied to the HR puzzle, revealing the presence in P. syringae of clusters of hrp genes, so named because they are required for the HR and pathogenicity, and of avr genes, so named because their presence confers HR-associated avirulence in resistant cultivars of a host plant species. A series of breakthroughs over the next two decades revealed that (i) hrp gene clusters encode a type III secretion system (T3SS), which injects Avr (now "effector") proteins into plant cells, where their recognition triggers the HR; (ii) T3SSs, which are typically present in pathogenicity islands acquired by horizontal gene transfers, are found in many bacterial pathogens of plants and animals and inject many effector proteins, which are collectively essential for pathogenicity; and (iii) a primary function of phytopathogen effectors is to subvert non-HR defenses resulting from recognition of conserved microbial features presented outside of plant cells. In the 2000s, Hrp system research shifted to extracellular components enabling effector delivery across plant cell walls and plasma membranes, regulation, and tools for studying effectors. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Proteínas de Bactérias , Sistemas de Secreção Tipo III , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo III/metabolismo , Células Vegetais/metabolismo , Doenças das Plantas/microbiologia , Plantas , Pseudomonas syringae/genética
20.
Plant Physiol ; 193(1): 26-41, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37070572

RESUMO

The unequal (asymmetric) distribution of cell structures and proteins within a cell is designated as cell polarity. Cell polarity is a crucial prerequisite for morphogenetic processes such as oriented cell division and directed cell expansion. Rho-related GTPase from plants (ROPs) are required for cellular morphogenesis through the reorganization of the cytoskeleton and vesicle transport in various tissues. Here, I review recent advances in ROP-dependent tip growth, vesicle transport, and tip architecture. I report on the regulatory mechanisms of ROP upstream regulators found in different cell types. It appears that these regulators assemble in nanodomains with specific lipid compositions and recruit ROPs for activation in a stimulus-dependent manner. Current models link mechanosensing/mechanotransduction to ROP polarity signaling involved in feedback mechanisms via the cytoskeleton. Finally, I discuss ROP signaling components that are upregulated by tissue-specific transcription factors and exhibit specific localization patterns during cell division, clearly suggesting ROP signaling in division plane alignment.


Assuntos
Polaridade Celular , Mecanotransdução Celular , Células Vegetais/metabolismo , Transdução de Sinais , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo , Morfogênese/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...